78 Commits

Author SHA1 Message Date
Chris Tsang
8889cbc7ea Tweaks
Some checks failed
Rust / build (push) Has been cancelled
2024-09-26 12:59:45 +01:00
Wil Carmon
6b379a02ef Update svg.rs (#92) 2024-09-26 12:58:43 +01:00
Wil Carmon
2635d5b874 Update config.rs (#91)
added #[derive(Clone, Debug)]
2024-09-26 12:58:30 +01:00
Chris Tsang
f6cf3e8705 Refactor 2024-05-30 10:04:23 +01:00
Chris Tsang
36b16de17a Key transparent image in webapp 2024-05-29 15:10:11 +01:00
Chris Tsang
7887c1ebf8 Update readme 2024-05-02 23:57:13 +01:00
Chris Tsang
6fdfec8610 python 0.6.11 2024-05-02 22:58:11 +01:00
York
1aff9a300a Add support for conversion from python bytes (#79)
* Allow conversion from python bytes

* Update function name

* Add convert_pixels_to_svg python function

* Update README.md

* Update README.md
2024-05-02 22:24:56 +01:00
Chris Tsang
ac0a89e08a README 2024-04-20 16:24:41 +01:00
Chris Tsang
b09f71a2b5 LICENSE 2024-04-20 16:21:36 +01:00
Chris Tsang
e4897dfe99 README 2024-04-20 16:16:57 +01:00
Chris Tsang
4544ca740d README 2024-04-20 16:14:21 +01:00
Chris Tsang
3d92586e33 Update CI script 2024-04-20 15:52:58 +01:00
Chris Tsang
725adf5364 Update README.md 2024-03-30 14:46:52 +00:00
Chris Tsang
05f82c7bb5 Test 2024-03-29 19:26:28 +00:00
Chris Tsang
b7ac336b6d Add release script 2024-03-29 19:06:29 +00:00
Chris Tsang
c03a8ffced 0.6.4 2024-03-29 19:01:16 +00:00
Chris Tsang
3223ba56ec Upgrade dependency 2024-03-29 18:59:55 +00:00
Chris Tsang
ddb47e1ad4 Revert "Experiment with idealizing small circles"
This reverts commit c3012c6aef.
2024-03-29 18:58:06 +00:00
Chris Tsang
177797108d Changelog 2024-03-29 18:57:57 +00:00
Chris Tsang
370083f818 0.6.3 2024-03-29 18:57:57 +00:00
Chris Tsang
c3012c6aef Experiment with idealizing small circles 2024-03-29 18:57:57 +00:00
Chris Tsang
2774fc06c9 Reduce default path precision 2023-11-12 23:05:45 +00:00
Chris Tsang
fa7d021055 Readme 2023-11-12 20:39:25 +00:00
Chris Tsang
cc43924601 cargo fmt 2023-11-12 20:38:01 +00:00
Chris Tsang
9dbbd100df Bump 2023-11-12 20:36:35 +00:00
linkmauve
37a2570f49 Add a function to do in-memory conversion (#59)
* Move path handling out of conversion functions

This lets us decouple file reading/writing from the actual conversion.

* Move Config::from_args() to main.rs

* Remove path support from Config

Instead the input_path and output_path have to be passed to
convert_image_to_svg() manually.

* Add a simplified convert() function

This lets the user convert an image from memory, without encoding it to
PNG, writing it to a file, then reopening this file and decoding it
using the image crate.

It also allows the user to not write a SVG directly to a file.
2023-11-13 04:28:05 +08:00
Chris Tsang
b2cd1a9524 Expose as rlib too 2023-10-24 08:43:37 +01:00
Chris Tsang
ac93bd4a51 Edit 2023-09-24 11:08:30 +01:00
Chris Tsang
e62f071b34 Edit 2023-09-23 11:52:36 +01:00
Chris Tsang
884092a5b9 Edit 2023-09-23 11:49:54 +01:00
Chris Tsang
5f5a6c6648 README 2023-09-23 11:45:36 +01:00
Chris Tsang
022018beb2 0.6.1 2023-09-23 11:12:34 +01:00
Chris Tsang
cc39c8c5ca README 2023-09-23 11:06:18 +01:00
Evan Jones
fa1ab68ef3 Python Bindings. Again. No, really! (#55)
* - Cargo.toml:  add `crate-type = ["cdylib"] to [lib]; lacking this is what was causing the executable to be put in wheels
- pyproject.toml: add "python-binding" to features for conditional compilation
- main.rs:  `cargo build` was failing for the vtracer executable; I think the previous import scheme had an implicit dependency on the library being built and called 'vtracer'. The other way to do this would have been to add an explicit dependency to the [[bin]], but making explicit imports here solves things directly

* re-enable linux builds; features are defined in the pyproject.toml now rather than in the workflow arguments

* And publish Linux, too!
2023-09-23 02:10:04 +08:00
Chris Tsang
b04738fd18 well 2023-09-16 19:38:07 +01:00
Chris Tsang
1080c562ce Try again 2023-09-16 19:27:30 +01:00
Chris Tsang
e44e750721 try again 2023-09-16 19:09:20 +01:00
Chris Tsang
05f5b51db0 Add xml comment 2023-09-17 16:24:33 +01:00
Chris Tsang
68e8e7fdf1 Disable Linux for now 2023-09-17 15:47:55 +01:00
Chris Tsang
f5cce867f2 python again 2023-09-16 17:59:52 +01:00
Chris Tsang
79dd451da1 Remove filestar
From my knowledge they are no longer using vtracer
2023-09-16 17:53:43 +01:00
Chris Tsang
f71dd47907 python release 2023-09-16 17:47:04 +01:00
Chris Tsang
594125f737 Release notes 2023-09-16 15:31:36 +01:00
Chris Tsang
93e946f3c2 python release 2023-09-16 15:05:24 +01:00
Chris Tsang
914e4ab875 python release 2023-09-16 14:51:26 +01:00
Chris Tsang
95b8cbce6c Rename workflow 2023-09-16 14:40:29 +01:00
Chris Tsang
b49158f24c Rename workflow 2023-09-16 14:40:17 +01:00
Chris Tsang
f35df1f6b2 0.6.0 2023-09-16 14:35:49 +01:00
Evan Jones
f4c7828049 Python bindings configured correctly for PyPI releases (#54)
* Python bindings sep 2023 (#52)

* Added maturin-based Python binding, to be deployed to https://pypi.org/project/vtracer/

* Removed poetry mentions from pyproject.toml, added README_PY.md for use on PYPI

* ->   v0.6.1
-> moved Python bindings to bottom of converter.rs

* - README_PY.md needed to be inside the cmdapp directory to display on PyPi.irg
->  v0.6.3

* Move code around

* Edit Readme

* Edit RELEASES.md

* Feature guard

* Build wheels with the cmdapp/Cargo.toml rather than top-level Cargo.toml

* use cmdapp/Cargo.toml for all Maturin CI actions, which causes Github to build all platforms python wheels and submit a new release to PyPI

* Bump to 0.6.4 for new PyPI release with all platforms' wheels included

* PyPI didn't accept a 'linux_aarch64' wheel for a release. For the moment, remove the platform until I can convince the action to build 'manylinux_aarch64' or the like

* Version bump while I work out CI & PyPI release wrinkles

* Maturin authors say `compatibility = "linux"` in pyproject.toml is causing PyPI failure. Replacing with "manylinux2014"

* bump to v0.7.0 in preparation for release from original vtracer repo

---------

Co-authored-by: Chris Tsang <chris.2y3@outlook.com>
2023-09-17 06:24:13 +08:00
Chris Tsang
d5dfa9fd73 Readme 2023-07-24 22:55:26 +08:00
Chris Tsang
685009bd21 Allow filter_speckle to be 0 #47 2023-06-30 05:45:35 +08:00
Chris Tsang
971bffa948 Mentions Aliyun
Foot note: I was in touch with one of their engineers
2022-11-10 17:53:12 +08:00
Chris Tsang
7be6882d6b Readme 2022-10-14 00:32:02 +08:00
Chris Tsang
386a0bcaab Filestar 2022-10-14 00:29:13 +08:00
Chris Tsang
82284ab470 0.5.0 2022-10-09 18:01:35 +08:00
Chris Tsang
ead104f0ce Tweak should_key_image 2022-10-09 17:21:00 +08:00
zachwolfe
a7219fd370 Alpha channel handling in CLI (#23)
* Support transparent color images

* Remove unnecessary conditional

* Add temporary git url to visioncortex dependency

* Use fastrand instead of rand

* Reduce the number of random iterations when keying

* Add heuristic to avoid expensive calculations for non-transparent input

* Add three additional special keying colours

* Add transparency check to some inner pixels
2022-10-09 15:41:43 +08:00
Oskar Skuteli
2448dbb3ba fix docs typo (#25) 2022-09-25 15:06:19 +08:00
Chris Tsang
c9d9073b17 Merge pull request #16 from wolfgangmeyers/fix-converter-warning
Fix deprecation warning from converter.rs
2022-02-11 21:45:33 +08:00
Wolfgang Meyers
47091b0bf5 Fix deprecation warning from converter.ts 2022-02-10 18:13:51 -08:00
Chris Tsang
8439cc995d Refactor path_precision 2021-07-27 21:01:20 +08:00
Chris Tsang
0b292ad35f Readme 2021-07-24 16:48:47 +08:00
Chris Tsang
ebb17ac22b vtracer-webapp 2021-07-24 16:37:41 +08:00
Chris Tsang
227850dd83 Release 2021-07-24 15:58:51 +08:00
Chris Tsang
e0dac19c31 Article link 2021-07-24 15:42:35 +08:00
Chris Tsang
d18d4f8b81 Readme 2021-07-24 00:00:59 +08:00
Chris Tsang
60a4ce579f Release 2021-07-23 23:35:54 +08:00
Chris Tsang
c1c09d964c Readme 2021-07-23 23:35:54 +08:00
Chris Tsang
c2a5626afa 0.4.0 2021-07-23 23:35:54 +08:00
Bobby Ng
d0593e716a SVG path string numeric precision 2021-07-23 23:35:45 +08:00
Chris Tsang
9ce7df176a Update .gitattributes 2021-07-23 18:29:12 +08:00
Chris Tsang
5928c0a7f5 Update screenshots 2021-03-01 21:13:24 +08:00
Chris Tsang
b2c95a50cd Update README.md 2021-03-01 21:13:24 +08:00
Chris Tsang
bcd3ffb40e Update COPYRIGHT 2021-02-07 14:22:26 +08:00
Chris Tsang
20da3efd3c Create .gitattributes 2021-01-25 00:57:44 +08:00
Chris Tsang
0c27d1f06a Update README.md 2021-01-25 00:53:01 +08:00
Chris Tsang
0c7c7fc808 Demo fixup 2021-01-24 22:12:01 +08:00
42 changed files with 1511 additions and 395 deletions

1
.gitattributes vendored Normal file
View File

@@ -0,0 +1 @@
docs/** linguist-generated

121
.github/workflows/python.yml vendored Normal file
View File

@@ -0,0 +1,121 @@
# This file is autogenerated by maturin v1.2.3
# To update, run
#
# maturin generate-ci github
#
name: Python
on:
push:
tags:
- '*'
pull_request:
workflow_dispatch:
permissions:
contents: read
jobs:
linux:
runs-on: ubuntu-latest
strategy:
matrix:
target: [x86_64, x86, aarch64, armv7, s390x, ppc64le]
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Build wheels
uses: PyO3/maturin-action@v1
with:
target: ${{ matrix.target }}
args: -m cmdapp/Cargo.toml --release --out dist --find-interpreter
sccache: 'true'
manylinux: auto
- name: Upload wheels
uses: actions/upload-artifact@v3
with:
name: wheels
path: dist
windows:
runs-on: windows-latest
strategy:
matrix:
target: [x64, x86]
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: '3.10'
architecture: ${{ matrix.target }}
- name: Build wheels
uses: PyO3/maturin-action@v1
with:
target: ${{ matrix.target }}
args: -m cmdapp/Cargo.toml --release --out dist --find-interpreter
sccache: 'true'
- name: Upload wheels
uses: actions/upload-artifact@v3
with:
name: wheels
path: dist
macos:
runs-on: macos-latest
strategy:
matrix:
target: [x86_64, aarch64]
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Build wheels
uses: PyO3/maturin-action@v1
with:
target: ${{ matrix.target }}
args: -m cmdapp/Cargo.toml --release --out dist --find-interpreter
sccache: 'true'
- name: Upload wheels
uses: actions/upload-artifact@v3
with:
name: wheels
path: dist
sdist:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Build sdist
uses: PyO3/maturin-action@v1
with:
command: sdist
args: -m cmdapp/Cargo.toml --out dist
- name: Upload sdist
uses: actions/upload-artifact@v3
with:
name: wheels
path: dist
release:
name: Release
runs-on: ubuntu-latest
# Specifying a GitHub environment is optional, but strongly encouraged
environment: python
permissions:
# IMPORTANT: this permission is mandatory for trusted publishing
id-token: write
if: "startsWith(github.ref, 'refs/tags/')"
needs: [windows, macos, sdist, linux]
steps:
- uses: actions/download-artifact@v3
with:
name: wheels
- name: Publish to PyPI
uses: PyO3/maturin-action@v1
with:
command: upload
args: --non-interactive --skip-existing *
# manylinux: auto

30
.github/workflows/release.yml vendored Normal file
View File

@@ -0,0 +1,30 @@
name: Release
on:
release:
types: [published]
jobs:
release:
strategy:
matrix:
include:
- target: aarch64-unknown-linux-musl
os: ubuntu-latest
- target: x86_64-unknown-linux-musl
os: ubuntu-latest
- target: aarch64-apple-darwin
os: macos-latest
- target: x86_64-apple-darwin
os: macos-latest
- target: x86_64-pc-windows-msvc
os: windows-latest
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4
- uses: taiki-e/upload-rust-binary-action@v1
with:
bin: vtracer
target: ${{ matrix.target }}
# (required) GitHub token for uploading assets to GitHub Releases.
token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -1,10 +1,23 @@
name: Rust
on:
push:
branches: [ master ]
pull_request:
branches: [ master ]
paths-ignore:
- '**.md'
- '.github/ISSUE_TEMPLATE/**'
push:
paths-ignore:
- '**.md'
- '.github/ISSUE_TEMPLATE/**'
branches:
- master
- 0.*.x
- pr/**/ci
- ci-*
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.ref || github.run_id }}
cancel-in-progress: true
env:
CARGO_TERM_COLOR: always

48
CHANGELOG.md Normal file
View File

@@ -0,0 +1,48 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](http://keepachangelog.com/)
and this project adheres to [Semantic Versioning](http://semver.org/).
## 0.6.4 - 2024-03-29
* Update `visioncortex` version to `0.8.8`
## 0.6.3 - 2023-11-21
* New converter API https://github.com/visioncortex/vtracer/pull/59
## 0.6.1 - 2023-09-23
* Fixed "The two lines are parallel!"
### Python Binding
Thanks to the contribution of [@etjones](https://github.com/etjones), we now have an official Python binding! https://github.com/visioncortex/vtracer/pull/55
https://pypi.org/project/vtracer/0.6.10/
## 0.5.0 - 2022-10-09
* Handle transparent png images (cli) https://github.com/visioncortex/vtracer/pull/23
## 0.4.0 - 2021-07-23
* SVG path string numeric precision
## 0.3.0 - 2021-01-24
* Added cutout mode
## 0.2.0 - 2020-11-15
* Use relative & closed paths
## 0.1.1 - 2020-11-01
* SVG namespace
## 0.1.0 - 2020-10-31
* Initial release

View File

@@ -3,4 +3,5 @@
members = [
"cmdapp",
"webapp",
]
]
resolver = "2"

25
LICENSE Normal file
View File

@@ -0,0 +1,25 @@
Copyright (c) 2024 TSANG, Hao Fung
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

154
README.md
View File

@@ -8,74 +8,148 @@
</p>
<h3>
<a href="//www.visioncortex.org/vtracer-docs">Document</a>
<a href="https://www.visioncortex.org/vtracer-docs">Article</a>
<span> | </span>
<a href="//www.visioncortex.org/vtracer/">Demo</a>
<a href="https://www.visioncortex.org/vtracer/">Web App</a>
<span> | </span>
<a href="//github.com/visioncortex/vtracer/releases/latest">Download</a>
<a href="https://github.com/visioncortex/vtracer/releases">Download</a>
</h3>
<sub>Built with 🦀 by <a href="//www.visioncortex.org/">The Vision Cortex Research Group</a></sub>
<sub>Built with 🦀 by <a href="https://www.visioncortex.org/">The Vision Cortex Research Group</a></sub>
</div>
## Introduction
visioncortex VTracer is an open source software to convert raster images (like jpg & png) into vector graphics (svg). It can vectorize graphics and photographs and trace the curves to output compact vector files.
Comparing to [Potrace]() which only accept binarized inputs (Black & White pixmap), VTracer has an image processing pipeline which can handle colored high resolution scans.
Comparing to [Potrace](http://potrace.sourceforge.net/) which only accept binarized inputs (Black & White pixmap), VTracer has an image processing pipeline which can handle colored high resolution scans. tl;dr: Potrace uses a `O(n^2)` fitting algorithm, whereas `vtracer` is entirely `O(n)`.
Comparing to Adobe Illustrator's Live Trace, VTracer's output is much more compact (less shapes) as we adopt a stacking strategy and avoid producing shapes with holes.
Comparing to Adobe Illustrator's [Image Trace](https://helpx.adobe.com/illustrator/using/image-trace.html), VTracer's output is much more compact (less shapes) as we adopt a stacking strategy and avoid producing shapes with holes.
VTracer is originally designed for processing high resolution scans of historic blueprints up to gigapixels. By setting both `filter_speckle` and `layer_difference` to `0`, VTracer can also handle low resolution pixel art, effectively achieving `image-rendering: pixelated` for retro game artworks.
VTracer is originally designed for processing high resolution scans of historic blueprints up to gigapixels. At the same time, VTracer can also handle low resolution pixel art, simulating `image-rendering: pixelated` for retro game artworks.
A technical description of the algorithm is on [visioncortex.org/vtracer-docs](//www.visioncortex.org/vtracer-docs).
Technical descriptions of the [tracing algorithm](https://www.visioncortex.org/vtracer-docs) and [clustering algorithm](https://www.visioncortex.org/impression-docs).
## Web App
VTracer and its [core library](//github.com/visioncortex/visioncortex) is implemented in [Rust](//www.rust-lang.org/). It provides us a solid foundation to develop robust and efficient algorithms and easily bring it to interactive applications. The webapp is a perfect showcase of the capability of the Rust + HTML5 platform.
VTracer and its [core library](//github.com/visioncortex/visioncortex) is implemented in [Rust](//www.rust-lang.org/). It provides us a solid foundation to develop robust and efficient algorithms and easily bring it to interactive applications. The webapp is a perfect showcase of the capability of the Rust + wasm platform.
![screenshot](docs/images/screenshot-01.png)
![screenshot](docs/images/screenshot-02.png)
## Command Line
```
visioncortex VTracer
A cmd app to convert images into vector graphics.
USAGE:
vtracer [OPTIONS] --input <input> --output <output>
FLAGS:
-h, --help Prints help information
-V, --version Prints version information
OPTIONS:
--colormode <color_mode> True color image `color` (default) or Binary image `bw`
-p, --color_precision <color_precision> Number of significant bits to use in an RGB channel
-c, --corner_threshold <corner_threshold> Minimum momentary angle (degree) to be considered a corner
-f, --filter_speckle <filter_speckle> Discard patches smaller than X px in size
-g, --gradient_step <gradient_step> Color difference between gradient layers
-i, --input <input> Path to input raster image
-m, --mode <mode> Curver fitting mode `pixel`, `polygon`, `spline`
-o, --output <output> Path to output vector graphics
--preset <preset> Use one of the preset configs `bw`, `poster`, `photo`
-l, --segment_length <segment_length>
Perform iterative subdivide smooth until all segments are shorter than this length
-s, --splice_threshold <splice_threshold> Minimum angle displacement (degree) to splice a spline
## Cmd App
```sh
visioncortex VTracer 0.6.0
A cmd app to convert images into vector graphics.
USAGE:
vtracer [OPTIONS] --input <input> --output <output>
FLAGS:
-h, --help Prints help information
-V, --version Prints version information
OPTIONS:
--colormode <color_mode> True color image `color` (default) or Binary image `bw`
-p, --color_precision <color_precision> Number of significant bits to use in an RGB channel
-c, --corner_threshold <corner_threshold> Minimum momentary angle (degree) to be considered a corner
-f, --filter_speckle <filter_speckle> Discard patches smaller than X px in size
-g, --gradient_step <gradient_step> Color difference between gradient layers
--hierarchical <hierarchical>
Hierarchical clustering `stacked` (default) or non-stacked `cutout`. Only applies to color mode.
-i, --input <input> Path to input raster image
-m, --mode <mode> Curver fitting mode `pixel`, `polygon`, `spline`
-o, --output <output> Path to output vector graphics
--path_precision <path_precision> Number of decimal places to use in path string
--preset <preset> Use one of the preset configs `bw`, `poster`, `photo`
-l, --segment_length <segment_length>
Perform iterative subdivide smooth until all segments are shorter than this length
-s, --splice_threshold <splice_threshold> Minimum angle displacement (degree) to splice a spline
```
### Usage
## Downloads
You can download pre-built binaries from [Releases](https://github.com/visioncortex/vtracer/releases).
You can also install the program from source from [crates.io/vtracer](https://crates.io/crates/vtracer):
```sh
cargo install vtracer
```
> You are strongly advised to not download from any other third-party sources
### Usage
```sh
./vtracer --input input.jpg --output output.svg
```
## Library
### Rust Library
The library can be found on [crates.io/vtracer](//crates.io/crates/vtracer).
You can install [`vtracer`](https://crates.io/crates/vtracer) as a Rust library.
### Install
```sh
cargo add vtracer
```
vtracer = "*"
### Python Library
Since `0.6`, [`vtracer`](https://pypi.org/project/vtracer/) is also packaged as Python native extensions, thanks to the awesome [pyo3](https://github.com/PyO3/pyo3) project.
```sh
pip install vtracer
```
## In the wild
VTracer is used by the following products (open a PR to add yours):
<table>
<tbody>
<tr>
<td><a href="https://logo.aliyun.com/logo#/name"><img src="docs/images/aliyun-logo.png" width="250"/></a>
<br>Smart logo design
</td>
<td></td>
</tr>
</tbody>
</table>
## Citations
VTracer has since been cited in a few academic papers. Please kindly let us know if you have cited our work:
+ [Framework to Vectorize Digital Artworks for Physical Fabrication based on Geometric Stylization Techniques](https://www.researchgate.net/publication/374448489_Framework_to_Vectorize_Digital_Artworks_for_Physical_Fabrication_based_on_Geometric_Stylization_Techniques)
+ [Image Vectorization: a Review](https://arxiv.org/pdf/2306.06441.pdf)
+ [StarVector: Generating Scalable Vector Graphics Code from Images](https://arxiv.org/abs/2312.11556)
## How did VTracer come about?
> The following content is an excerpt from my [unpublished memoir](https://github.com/visioncortex/memoir).
At my teenage, two open source projects in the vector graphics space inspired me the most: Potrace and Anti-Grain Geometry (AGG).
Many years later, in 2020, I was developing a video processing engine. And it became evident that it requires way more investment to be commercially viable. So before abandoning the project, I wanted to publish *something* as open-source for posterity. At that time, I already developed a prototype vector graphics tracer. It can convert high-resolution scans of hand-drawn blueprints into vectors. But it can only process black and white images, and can only output polygons, not splines.
The plan was to fully develop the vectorizer: to handle color images and output splines. I recruited a very talented intern, [@shpun817](https://github.com/shpun817), to work on VTracer. I grafted the frontend of the video processing engine - the ["The Clustering Algorithm"](https://www.visioncortex.org/impression-docs#the-clustering-algorithm) as the pre-processor.
Three months later, we published the first version on Reddit. Out of my surprise, the response of such an underwhelming project was overwhelming.
## What's next?
There are several things in my mind:
1. Path simplification. Implement a post-process filter to the output paths to further reduce the number of splines.
2. Perfect cut-out mode. Right now in cut-out mode, the shapes do not share boundaries perfectly, but have seams.
3. Pencil tracing. Instead of tracing shapes as closed paths, may be we can attempt to skeletonize the shapes as open paths. The output would be clean, fixed width strokes.
4. Image cleaning. Right now the tracer works best on losslessly compressed pngs. If an image suffered from jpeg noises, it could impact the tracing quality. We might be able to develop a pre-filtering pass that denoises the input.
If you are interested in working on them or willing to sponsor its development, feel free to get in touch.

View File

@@ -1,22 +0,0 @@
Version 0.3.0 (2021-01-24)
==========================
- Added cutout mode
Version 0.2.0 (2020-11-15)
==========================
- Use relative & closed paths
Version 0.1.1 (2020-11-01)
==========================
- SVG namespace
Version 0.1.0 (2020-10-31)
==========================
- Initial release

View File

@@ -1,8 +1,8 @@
[package]
name = "vtracer"
version = "0.3.0"
authors = ["Chris Tsang <tyt2y7@gmail.com>"]
edition = "2018"
version = "0.6.4"
authors = ["Chris Tsang <chris.2y3@outlook.com>"]
edition = "2021"
description = "A cmd app to convert images into vector graphics."
license = "MIT OR Apache-2.0"
homepage = "http://www.visioncortex.org/vtracer"
@@ -13,4 +13,13 @@ keywords = ["svg", "computer-graphics"]
[dependencies]
clap = "2.33.3"
image = "0.23.10"
visioncortex = "0.4.0"
visioncortex = { version = "0.8.8" }
fastrand = "1.8"
pyo3 = { version = "0.19.0", optional = true }
[features]
python-binding = ["pyo3"]
[lib]
name = "vtracer"
crate-type = ["rlib", "cdylib"]

View File

@@ -1,4 +1,4 @@
Copyright (c) 2020 Tsang Hao Fung
Copyright (c) 2023 Tsang Hao Fung
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated

96
cmdapp/README.md Normal file
View File

@@ -0,0 +1,96 @@
<div align="center">
<img src="https://raw.githubusercontent.com/visioncortex/vtracer/master/docs/images/visioncortex-banner.png">
<h1>VTracer</h1>
<p>
<strong>Raster to Vector Graphics Converter built on top of visioncortex</strong>
</p>
<h3>
<a href="https://www.visioncortex.org/vtracer-docs">Article</a>
<span> | </span>
<a href="https://www.visioncortex.org/vtracer/">Demo</a>
<span> | </span>
<a href="https://github.com/visioncortex/vtracer/releases/latest">Download</a>
</h3>
<sub>Built with 🦀 by <a href="https://www.visioncortex.org/">The Vision Cortex Research Group</a></sub>
</div>
## Introduction
visioncortex VTracer is an open source software to convert raster images (like jpg & png) into vector graphics (svg). It can vectorize graphics and photographs and trace the curves to output compact vector files.
Comparing to [Potrace](http://potrace.sourceforge.net/) which only accept binarized inputs (Black & White pixmap), VTracer has an image processing pipeline which can handle colored high resolution scans.
Comparing to Adobe Illustrator's [Image Trace](https://helpx.adobe.com/illustrator/using/image-trace.html), VTracer's output is much more compact (less shapes) as we adopt a stacking strategy and avoid producing shapes with holes.
VTracer is originally designed for processing high resolution scans of historic blueprints up to gigapixels. At the same time, VTracer can also handle low resolution pixel art, simulating `image-rendering: pixelated` for retro game artworks.
A technical description of the algorithm is on [visioncortex.org/vtracer-docs](https://www.visioncortex.org/vtracer-docs).
## Cmd App
```sh
visioncortex VTracer 0.6.0
A cmd app to convert images into vector graphics.
USAGE:
vtracer [OPTIONS] --input <input> --output <output>
FLAGS:
-h, --help Prints help information
-V, --version Prints version information
OPTIONS:
--colormode <color_mode> True color image `color` (default) or Binary image `bw`
-p, --color_precision <color_precision> Number of significant bits to use in an RGB channel
-c, --corner_threshold <corner_threshold> Minimum momentary angle (degree) to be considered a corner
-f, --filter_speckle <filter_speckle> Discard patches smaller than X px in size
-g, --gradient_step <gradient_step> Color difference between gradient layers
--hierarchical <hierarchical>
Hierarchical clustering `stacked` (default) or non-stacked `cutout`. Only applies to color mode.
-i, --input <input> Path to input raster image
-m, --mode <mode> Curver fitting mode `pixel`, `polygon`, `spline`
-o, --output <output> Path to output vector graphics
--path_precision <path_precision> Number of decimal places to use in path string
--preset <preset> Use one of the preset configs `bw`, `poster`, `photo`
-l, --segment_length <segment_length>
Perform iterative subdivide smooth until all segments are shorter than this length
-s, --splice_threshold <splice_threshold> Minimum angle displacement (degree) to splice a spline
```
### Install
You can download pre-built binaries from [Releases](https://github.com/visioncortex/vtracer/releases).
You can also install the program from source from [crates.io/vtracer](https://crates.io/crates/vtracer):
```sh
cargo install vtracer
```
### Usage
```sh
./vtracer --input input.jpg --output output.svg
```
## Rust Library
You can install [`vtracer`](https://crates.io/crates/vtracer) as a Rust library.
```sh
cargo add vtracer
```
## Python Library
Since `0.6`, [`vtracer`](https://pypi.org/project/vtracer/) is also packaged as Python native extensions, thanks to the awesome [pyo3](https://github.com/PyO3/pyo3) project.
```sh
pip install vtracer
```

28
cmdapp/pyproject.toml Normal file
View File

@@ -0,0 +1,28 @@
[project]
name = "vtracer"
version = "0.6.11"
description = "Python bindings for the Rust Vtracer raster-to-vector library"
authors = [ { name = "Chris Tsang", email = "chris.2y3@outlook.com" } ]
readme = "vtracer/README.md"
requires-python = ">=3.7"
license = "MIT"
classifiers = [
"Programming Language :: Rust",
"Programming Language :: Python :: Implementation :: CPython",
"Programming Language :: Python :: Implementation :: PyPy",
]
[dependencies]
python = "^3.7"
[dev-dependencies]
maturin = "^1.2"
[build-system]
requires = ["maturin>=1.2,<2.0"]
build-backend = "maturin"
[tool.maturin]
features = ["pyo3/extension-module", "python-binding"]
compatibility = "manylinux2014"
sdist-include = ["LICENSE-MIT", "vtracer/README.md"]

View File

@@ -1,28 +1,28 @@
use std::str::FromStr;
use std::path::PathBuf;
use clap::{Arg, App};
use visioncortex::PathSimplifyMode;
#[derive(Debug, Clone)]
pub enum Preset {
Bw,
Poster,
Photo
Photo,
}
#[derive(Debug, Clone)]
pub enum ColorMode {
Color,
Binary,
}
#[derive(Debug, Clone)]
pub enum Hierarchical {
Stacked,
Cutout,
}
/// Converter config
#[derive(Debug, Clone)]
pub struct Config {
pub input_path: PathBuf,
pub output_path: PathBuf,
pub color_mode: ColorMode,
pub hierarchical: Hierarchical,
pub filter_speckle: usize,
@@ -33,11 +33,11 @@ pub struct Config {
pub length_threshold: f64,
pub max_iterations: usize,
pub splice_threshold: i32,
pub path_precision: Option<u32>,
}
#[derive(Debug, Clone)]
pub(crate) struct ConverterConfig {
pub input_path: PathBuf,
pub output_path: PathBuf,
pub color_mode: ColorMode,
pub hierarchical: Hierarchical,
pub filter_speckle_area: usize,
@@ -48,13 +48,12 @@ pub(crate) struct ConverterConfig {
pub length_threshold: f64,
pub max_iterations: usize,
pub splice_threshold: f64,
pub path_precision: Option<u32>,
}
impl Default for Config {
fn default() -> Self {
Self {
input_path: PathBuf::default(),
output_path: PathBuf::default(),
color_mode: ColorMode::Color,
hierarchical: Hierarchical::Stacked,
mode: PathSimplifyMode::Spline,
@@ -65,6 +64,7 @@ impl Default for Config {
length_threshold: 4.0,
splice_threshold: 45,
max_iterations: 10,
path_precision: Some(2),
}
}
}
@@ -106,211 +106,10 @@ impl FromStr for Preset {
}
}
fn path_simplify_mode_from_str(s: &str) -> PathSimplifyMode {
match s {
"polygon" => PathSimplifyMode::Polygon,
"spline" => PathSimplifyMode::Spline,
"none" => PathSimplifyMode::None,
_ => panic!("unknown PathSimplifyMode {}", s),
}
}
impl Config {
pub fn from_args() -> Self {
let app = App::new("visioncortex VTracer ".to_owned() + env!("CARGO_PKG_VERSION"))
.about("A cmd app to convert images into vector graphics.");
let app = app.arg(Arg::with_name("input")
.long("input")
.short("i")
.takes_value(true)
.help("Path to input raster image")
.required(true));
let app = app.arg(Arg::with_name("output")
.long("output")
.short("o")
.takes_value(true)
.help("Path to output vector graphics")
.required(true));
let app = app.arg(Arg::with_name("color_mode")
.long("colormode")
.takes_value(true)
.help("True color image `color` (default) or Binary image `bw`"));
let app = app.arg(Arg::with_name("hierarchical")
.long("hierarchical")
.takes_value(true)
.help(
"Hierarchical clustering `stacked` (default) or non-stacked `cutout`. \
Only applies to color mode. "
));
let app = app.arg(Arg::with_name("preset")
.long("preset")
.takes_value(true)
.help("Use one of the preset configs `bw`, `poster`, `photo`"));
let app = app.arg(Arg::with_name("filter_speckle")
.long("filter_speckle")
.short("f")
.takes_value(true)
.help("Discard patches smaller than X px in size"));
let app = app.arg(Arg::with_name("color_precision")
.long("color_precision")
.short("p")
.takes_value(true)
.help("Number of significant bits to use in an RGB channel"));
let app = app.arg(Arg::with_name("gradient_step")
.long("gradient_step")
.short("g")
.takes_value(true)
.help("Color difference between gradient layers"));
let app = app.arg(Arg::with_name("corner_threshold")
.long("corner_threshold")
.short("c")
.takes_value(true)
.help("Minimum momentary angle (degree) to be considered a corner"));
let app = app.arg(Arg::with_name("segment_length")
.long("segment_length")
.short("l")
.takes_value(true)
.help("Perform iterative subdivide smooth until all segments are shorter than this length"));
let app = app.arg(Arg::with_name("splice_threshold")
.long("splice_threshold")
.short("s")
.takes_value(true)
.help("Minimum angle displacement (degree) to splice a spline"));
let app = app.arg(Arg::with_name("mode")
.long("mode")
.short("m")
.takes_value(true)
.help("Curver fitting mode `pixel`, `polygon`, `spline`"));
// Extract matches
let matches = app.get_matches();
let mut config = Config::default();
let input_path = matches.value_of("input").expect("Input path is required, please specify it by --input or -i.");
let output_path = matches.value_of("output").expect("Output path is required, please specify it by --output or -o.");
if let Some(value) = matches.value_of("preset") {
config = Self::from_preset(Preset::from_str(value).unwrap(), input_path, output_path);
}
config.input_path = PathBuf::from(input_path);
config.output_path = PathBuf::from(output_path);
if let Some(value) = matches.value_of("color_mode") {
config.color_mode = ColorMode::from_str(if value.trim() == "bw" || value.trim() == "BW" {"binary"} else {"color"}).unwrap()
}
if let Some(value) = matches.value_of("hierarchical") {
config.hierarchical = Hierarchical::from_str(value).unwrap()
}
if let Some(value) = matches.value_of("mode") {
let value = value.trim();
config.mode = path_simplify_mode_from_str(if value == "pixel" {
"none"
} else if value == "polygon" {
"polygon"
} else if value == "spline" {
"spline"
} else {
panic!("Parser Error: Curve fitting mode is invalid with value {}", value);
});
}
if let Some(value) = matches.value_of("filter_speckle") {
if value.trim().parse::<usize>().is_ok() { // is numeric
let value = value.trim().parse::<usize>().unwrap();
if value < 1 || value > 16 {
panic!("Out of Range Error: Filter speckle is invalid at {}. It must be within [1,16].", value);
}
config.filter_speckle = value;
} else {
panic!("Parser Error: Filter speckle is not a positive integer with value {}.", value);
}
}
if let Some(value) = matches.value_of("color_precision") {
if value.trim().parse::<i32>().is_ok() { // is numeric
let value = value.trim().parse::<i32>().unwrap();
if value < 1 || value > 8 {
panic!("Out of Range Error: Color precision is invalid at {}. It must be within [1,8].", value);
}
config.color_precision = value;
} else {
panic!("Parser Error: Color precision is not an integer with value {}.", value);
}
}
if let Some(value) = matches.value_of("gradient_step") {
if value.trim().parse::<i32>().is_ok() { // is numeric
let value = value.trim().parse::<i32>().unwrap();
if value < 0 || value > 255 {
panic!("Out of Range Error: Gradient step is invalid at {}. It must be within [0,255].", value);
}
config.layer_difference = value;
} else {
panic!("Parser Error: Gradient step is not an integer with value {}.", value);
}
}
if let Some(value) = matches.value_of("corner_threshold") {
if value.trim().parse::<i32>().is_ok() { // is numeric
let value = value.trim().parse::<i32>().unwrap();
if value < 0 || value > 180 {
panic!("Out of Range Error: Corner threshold is invalid at {}. It must be within [0,180].", value);
}
config.corner_threshold = value
} else {
panic!("Parser Error: Corner threshold is not numeric with value {}.", value);
}
}
if let Some(value) = matches.value_of("segment_length") {
if value.trim().parse::<f64>().is_ok() { // is numeric
let value = value.trim().parse::<f64>().unwrap();
if value < 3.5 || value > 10.0 {
panic!("Out of Range Error: Segment length is invalid at {}. It must be within [3.5,10].", value);
}
config.length_threshold = value;
} else {
panic!("Parser Error: Segment length is not numeric with value {}.", value);
}
}
if let Some(value) = matches.value_of("splice_threshold") {
if value.trim().parse::<i32>().is_ok() { // is numeric
let value = value.trim().parse::<i32>().unwrap();
if value < 0 || value > 180 {
panic!("Out of Range Error: Segment length is invalid at {}. It must be within [0,180].", value);
}
config.splice_threshold = value;
} else {
panic!("Parser Error: Segment length is not numeric with value {}.", value);
}
}
config
}
pub fn from_preset(preset: Preset, input_path: &str, output_path: &str) -> Self {
let input_path = PathBuf::from(input_path);
let output_path = PathBuf::from(output_path);
pub fn from_preset(preset: Preset) -> Self {
match preset {
Preset::Bw => Self {
input_path,
output_path,
color_mode: ColorMode::Binary,
hierarchical: Hierarchical::Stacked,
filter_speckle: 4,
@@ -321,10 +120,9 @@ impl Config {
length_threshold: 4.0,
max_iterations: 10,
splice_threshold: 45,
path_precision: Some(2),
},
Preset::Poster => Self {
input_path,
output_path,
color_mode: ColorMode::Color,
hierarchical: Hierarchical::Stacked,
filter_speckle: 4,
@@ -335,10 +133,9 @@ impl Config {
length_threshold: 4.0,
max_iterations: 10,
splice_threshold: 45,
path_precision: Some(2),
},
Preset::Photo => Self {
input_path,
output_path,
color_mode: ColorMode::Color,
hierarchical: Hierarchical::Stacked,
filter_speckle: 10,
@@ -349,14 +146,13 @@ impl Config {
length_threshold: 4.0,
max_iterations: 10,
splice_threshold: 45,
}
path_precision: Some(2),
},
}
}
pub(crate) fn into_converter_config(self) -> ConverterConfig {
ConverterConfig {
input_path: self.input_path,
output_path: self.output_path,
color_mode: self.color_mode,
hierarchical: self.hierarchical,
filter_speckle_area: self.filter_speckle * self.filter_speckle,
@@ -367,10 +163,11 @@ impl Config {
length_threshold: self.length_threshold,
max_iterations: self.max_iterations,
splice_threshold: deg2rad(self.splice_threshold),
path_precision: self.path_precision,
}
}
}
fn deg2rad(deg: i32) -> f64 {
deg as f64 / 180.0 * std::f64::consts::PI
}
}

View File

@@ -1,42 +1,139 @@
use std::path::PathBuf;
use std::path::Path;
use std::{fs::File, io::Write};
use visioncortex::{Color, ColorImage, ColorName};
use visioncortex::color_clusters::{Runner, RunnerConfig, HIERARCHICAL_MAX};
use super::config::{Config, ColorMode, Hierarchical, ConverterConfig};
use super::config::{ColorMode, Config, ConverterConfig, Hierarchical};
use super::svg::SvgFile;
use fastrand::Rng;
use visioncortex::color_clusters::{KeyingAction, Runner, RunnerConfig, HIERARCHICAL_MAX};
use visioncortex::{Color, ColorImage, ColorName};
/// Convert an image file into svg file
pub fn convert_image_to_svg(config: Config) -> Result<(), String> {
const NUM_UNUSED_COLOR_ITERATIONS: usize = 6;
/// The fraction of pixels in the top/bottom rows of the image that need to be transparent before
/// the entire image will be keyed.
const KEYING_THRESHOLD: f32 = 0.2;
/// Convert an in-memory image into an in-memory SVG
pub fn convert(img: ColorImage, config: Config) -> Result<SvgFile, String> {
let config = config.into_converter_config();
match config.color_mode {
ColorMode::Color => color_image_to_svg(config),
ColorMode::Binary => binary_image_to_svg(config),
ColorMode::Color => color_image_to_svg(img, config),
ColorMode::Binary => binary_image_to_svg(img, config),
}
}
fn color_image_to_svg(config: ConverterConfig) -> Result<(), String> {
let (img, width, height);
match read_image(config.input_path) {
Ok(values) => {
img = values.0;
width = values.1;
height = values.2;
},
Err(msg) => return Err(msg),
/// Convert an image file into svg file
pub fn convert_image_to_svg(
input_path: &Path,
output_path: &Path,
config: Config,
) -> Result<(), String> {
let img = read_image(input_path)?;
let svg = convert(img, config)?;
write_svg(svg, output_path)
}
fn color_exists_in_image(img: &ColorImage, color: Color) -> bool {
for y in 0..img.height {
for x in 0..img.width {
let pixel_color = img.get_pixel(x, y);
if pixel_color.r == color.r && pixel_color.g == color.g && pixel_color.b == color.b {
return true;
}
}
}
false
}
fn find_unused_color_in_image(img: &ColorImage) -> Result<Color, String> {
let special_colors = IntoIterator::into_iter([
Color::new(255, 0, 0),
Color::new(0, 255, 0),
Color::new(0, 0, 255),
Color::new(255, 255, 0),
Color::new(0, 255, 255),
Color::new(255, 0, 255),
]);
let rng = Rng::new();
let random_colors =
(0..NUM_UNUSED_COLOR_ITERATIONS).map(|_| Color::new(rng.u8(..), rng.u8(..), rng.u8(..)));
for color in special_colors.chain(random_colors) {
if !color_exists_in_image(img, color) {
return Ok(color);
}
}
Err(String::from(
"unable to find unused color in image to use as key",
))
}
fn should_key_image(img: &ColorImage) -> bool {
if img.width == 0 || img.height == 0 {
return false;
}
let runner = Runner::new(RunnerConfig {
diagonal: config.layer_difference == 0,
hierarchical: HIERARCHICAL_MAX,
batch_size: 25600,
good_min_area: config.filter_speckle_area,
good_max_area: (width * height),
is_same_color_a: config.color_precision_loss,
is_same_color_b: 1,
deepen_diff: config.layer_difference,
hollow_neighbours: 1,
}, img);
// Check for transparency at several scanlines
let threshold = ((img.width * 2) as f32 * KEYING_THRESHOLD) as usize;
let mut num_transparent_pixels = 0;
let y_positions = [
0,
img.height / 4,
img.height / 2,
3 * img.height / 4,
img.height - 1,
];
for y in y_positions {
for x in 0..img.width {
if img.get_pixel(x, y).a == 0 {
num_transparent_pixels += 1;
}
if num_transparent_pixels >= threshold {
return true;
}
}
}
false
}
fn color_image_to_svg(mut img: ColorImage, config: ConverterConfig) -> Result<SvgFile, String> {
let width = img.width;
let height = img.height;
let key_color = if should_key_image(&img) {
let key_color = find_unused_color_in_image(&img)?;
for y in 0..height {
for x in 0..width {
if img.get_pixel(x, y).a == 0 {
img.set_pixel(x, y, &key_color);
}
}
}
key_color
} else {
// The default color is all zeroes, which is treated by visioncortex as a special value meaning no keying will be applied.
Color::default()
};
let runner = Runner::new(
RunnerConfig {
diagonal: config.layer_difference == 0,
hierarchical: HIERARCHICAL_MAX,
batch_size: 25600,
good_min_area: config.filter_speckle_area,
good_max_area: (width * height),
is_same_color_a: config.color_precision_loss,
is_same_color_b: 1,
deepen_diff: config.layer_difference,
hollow_neighbours: 1,
key_color,
keying_action: if matches!(config.hierarchical, Hierarchical::Cutout) {
KeyingAction::Keep
} else {
KeyingAction::Discard
},
},
img,
);
let mut clusters = runner.run();
@@ -45,24 +142,29 @@ fn color_image_to_svg(config: ConverterConfig) -> Result<(), String> {
Hierarchical::Cutout => {
let view = clusters.view();
let image = view.to_color_image();
let runner = Runner::new(RunnerConfig {
diagonal: false,
hierarchical: 64,
batch_size: 25600,
good_min_area: 0,
good_max_area: (image.width * image.height) as usize,
is_same_color_a: 0,
is_same_color_b: 1,
deepen_diff: 0,
hollow_neighbours: 0,
}, image);
let runner = Runner::new(
RunnerConfig {
diagonal: false,
hierarchical: 64,
batch_size: 25600,
good_min_area: 0,
good_max_area: (image.width * image.height) as usize,
is_same_color_a: 0,
is_same_color_b: 1,
deepen_diff: 0,
hollow_neighbours: 0,
key_color,
keying_action: KeyingAction::Discard,
},
image,
);
clusters = runner.run();
},
}
}
let view = clusters.view();
let mut svg = SvgFile::new(width, height);
let mut svg = SvgFile::new(width, height, config.path_precision);
for &cluster_index in view.clusters_output.iter().rev() {
let cluster = view.get_cluster(cluster_index);
let paths = cluster.to_compound_path(
@@ -72,30 +174,22 @@ fn color_image_to_svg(config: ConverterConfig) -> Result<(), String> {
config.corner_threshold,
config.length_threshold,
config.max_iterations,
config.splice_threshold
config.splice_threshold,
);
svg.add_path(paths, cluster.residue_color());
}
write_svg(svg, config.output_path)
Ok(svg)
}
fn binary_image_to_svg(config: ConverterConfig) -> Result<(), String> {
let (img, width, height);
match read_image(config.input_path) {
Ok(values) => {
img = values.0;
width = values.1;
height = values.2;
},
Err(msg) => return Err(msg),
}
fn binary_image_to_svg(img: ColorImage, config: ConverterConfig) -> Result<SvgFile, String> {
let img = img.to_binary_image(|x| x.r < 128);
let width = img.width;
let height = img.height;
let clusters = img.to_clusters(false);
let mut svg = SvgFile::new(width, height);
let mut svg = SvgFile::new(width, height, config.path_precision);
for i in 0..clusters.len() {
let cluster = clusters.get_cluster(i);
if cluster.size() >= config.filter_speckle_area {
@@ -110,23 +204,27 @@ fn binary_image_to_svg(config: ConverterConfig) -> Result<(), String> {
}
}
write_svg(svg, config.output_path)
Ok(svg)
}
fn read_image(input_path: PathBuf) -> Result<(ColorImage, usize, usize), String> {
fn read_image(input_path: &Path) -> Result<ColorImage, String> {
let img = image::open(input_path);
let img = match img {
Ok(file) => file.to_rgba(),
Ok(file) => file.to_rgba8(),
Err(_) => return Err(String::from("No image file found at specified input path")),
};
let (width, height) = (img.width() as usize, img.height() as usize);
let img = ColorImage {pixels: img.as_raw().to_vec(), width, height};
let img = ColorImage {
pixels: img.as_raw().to_vec(),
width,
height,
};
Ok((img, width, height))
Ok(img)
}
fn write_svg(svg: SvgFile, output_path: PathBuf) -> Result<(), String> {
fn write_svg(svg: SvgFile, output_path: &Path) -> Result<(), String> {
let out_file = File::create(output_path);
let mut out_file = match out_file {
Ok(file) => file,
@@ -136,4 +234,4 @@ fn write_svg(svg: SvgFile, output_path: PathBuf) -> Result<(), String> {
write!(&mut out_file, "{}", svg).expect("failed to write file.");
Ok(())
}
}

View File

@@ -1,4 +1,4 @@
// Copyright 2020 Tsang Hao Fung. See the COPYRIGHT
// Copyright 2023 Tsang Hao Fung. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
@@ -10,8 +10,13 @@
mod config;
mod converter;
#[cfg(feature = "python-binding")]
mod python;
mod svg;
pub use config::*;
pub use converter::*;
pub use svg::*;
#[cfg(feature = "python-binding")]
pub use python::*;
pub use svg::*;
pub use visioncortex::ColorImage;

View File

@@ -1,14 +1,282 @@
use vtracer::{Config, convert_image_to_svg};
mod config;
mod converter;
mod svg;
use clap::{App, Arg};
use config::{ColorMode, Config, Hierarchical, Preset};
use std::path::PathBuf;
use std::str::FromStr;
use visioncortex::PathSimplifyMode;
fn path_simplify_mode_from_str(s: &str) -> PathSimplifyMode {
match s {
"polygon" => PathSimplifyMode::Polygon,
"spline" => PathSimplifyMode::Spline,
"none" => PathSimplifyMode::None,
_ => panic!("unknown PathSimplifyMode {}", s),
}
}
pub fn config_from_args() -> (PathBuf, PathBuf, Config) {
let app = App::new("visioncortex VTracer ".to_owned() + env!("CARGO_PKG_VERSION"))
.about("A cmd app to convert images into vector graphics.");
let app = app.arg(
Arg::with_name("input")
.long("input")
.short("i")
.takes_value(true)
.help("Path to input raster image")
.required(true),
);
let app = app.arg(
Arg::with_name("output")
.long("output")
.short("o")
.takes_value(true)
.help("Path to output vector graphics")
.required(true),
);
let app = app.arg(
Arg::with_name("color_mode")
.long("colormode")
.takes_value(true)
.help("True color image `color` (default) or Binary image `bw`"),
);
let app = app.arg(
Arg::with_name("hierarchical")
.long("hierarchical")
.takes_value(true)
.help(
"Hierarchical clustering `stacked` (default) or non-stacked `cutout`. \
Only applies to color mode. ",
),
);
let app = app.arg(
Arg::with_name("preset")
.long("preset")
.takes_value(true)
.help("Use one of the preset configs `bw`, `poster`, `photo`"),
);
let app = app.arg(
Arg::with_name("filter_speckle")
.long("filter_speckle")
.short("f")
.takes_value(true)
.help("Discard patches smaller than X px in size"),
);
let app = app.arg(
Arg::with_name("color_precision")
.long("color_precision")
.short("p")
.takes_value(true)
.help("Number of significant bits to use in an RGB channel"),
);
let app = app.arg(
Arg::with_name("gradient_step")
.long("gradient_step")
.short("g")
.takes_value(true)
.help("Color difference between gradient layers"),
);
let app = app.arg(
Arg::with_name("corner_threshold")
.long("corner_threshold")
.short("c")
.takes_value(true)
.help("Minimum momentary angle (degree) to be considered a corner"),
);
let app = app.arg(Arg::with_name("segment_length")
.long("segment_length")
.short("l")
.takes_value(true)
.help("Perform iterative subdivide smooth until all segments are shorter than this length"));
let app = app.arg(
Arg::with_name("splice_threshold")
.long("splice_threshold")
.short("s")
.takes_value(true)
.help("Minimum angle displacement (degree) to splice a spline"),
);
let app = app.arg(
Arg::with_name("mode")
.long("mode")
.short("m")
.takes_value(true)
.help("Curver fitting mode `pixel`, `polygon`, `spline`"),
);
let app = app.arg(
Arg::with_name("path_precision")
.long("path_precision")
.takes_value(true)
.help("Number of decimal places to use in path string"),
);
// Extract matches
let matches = app.get_matches();
let mut config = Config::default();
let input_path = matches
.value_of("input")
.expect("Input path is required, please specify it by --input or -i.");
let output_path = matches
.value_of("output")
.expect("Output path is required, please specify it by --output or -o.");
let input_path = PathBuf::from(input_path);
let output_path = PathBuf::from(output_path);
if let Some(value) = matches.value_of("preset") {
config = Config::from_preset(Preset::from_str(value).unwrap());
}
if let Some(value) = matches.value_of("color_mode") {
config.color_mode = ColorMode::from_str(if value.trim() == "bw" || value.trim() == "BW" {
"binary"
} else {
"color"
})
.unwrap()
}
if let Some(value) = matches.value_of("hierarchical") {
config.hierarchical = Hierarchical::from_str(value).unwrap()
}
if let Some(value) = matches.value_of("mode") {
let value = value.trim();
config.mode = path_simplify_mode_from_str(if value == "pixel" {
"none"
} else if value == "polygon" {
"polygon"
} else if value == "spline" {
"spline"
} else {
panic!("Parser Error: Curve fitting mode is invalid: {}", value);
});
}
if let Some(value) = matches.value_of("filter_speckle") {
if value.trim().parse::<usize>().is_ok() {
// is numeric
let value = value.trim().parse::<usize>().unwrap();
if value > 16 {
panic!("Out of Range Error: Filter speckle is invalid at {}. It must be within [0,16].", value);
}
config.filter_speckle = value;
} else {
panic!(
"Parser Error: Filter speckle is not a positive integer: {}.",
value
);
}
}
if let Some(value) = matches.value_of("color_precision") {
if value.trim().parse::<i32>().is_ok() {
// is numeric
let value = value.trim().parse::<i32>().unwrap();
if value < 1 || value > 8 {
panic!("Out of Range Error: Color precision is invalid at {}. It must be within [1,8].", value);
}
config.color_precision = value;
} else {
panic!(
"Parser Error: Color precision is not an integer: {}.",
value
);
}
}
if let Some(value) = matches.value_of("gradient_step") {
if value.trim().parse::<i32>().is_ok() {
// is numeric
let value = value.trim().parse::<i32>().unwrap();
if value < 0 || value > 255 {
panic!("Out of Range Error: Gradient step is invalid at {}. It must be within [0,255].", value);
}
config.layer_difference = value;
} else {
panic!("Parser Error: Gradient step is not an integer: {}.", value);
}
}
if let Some(value) = matches.value_of("corner_threshold") {
if value.trim().parse::<i32>().is_ok() {
// is numeric
let value = value.trim().parse::<i32>().unwrap();
if value < 0 || value > 180 {
panic!("Out of Range Error: Corner threshold is invalid at {}. It must be within [0,180].", value);
}
config.corner_threshold = value
} else {
panic!("Parser Error: Corner threshold is not numeric: {}.", value);
}
}
if let Some(value) = matches.value_of("segment_length") {
if value.trim().parse::<f64>().is_ok() {
// is numeric
let value = value.trim().parse::<f64>().unwrap();
if value < 3.5 || value > 10.0 {
panic!("Out of Range Error: Segment length is invalid at {}. It must be within [3.5,10].", value);
}
config.length_threshold = value;
} else {
panic!("Parser Error: Segment length is not numeric: {}.", value);
}
}
if let Some(value) = matches.value_of("splice_threshold") {
if value.trim().parse::<i32>().is_ok() {
// is numeric
let value = value.trim().parse::<i32>().unwrap();
if value < 0 || value > 180 {
panic!("Out of Range Error: Segment length is invalid at {}. It must be within [0,180].", value);
}
config.splice_threshold = value;
} else {
panic!("Parser Error: Segment length is not numeric: {}.", value);
}
}
if let Some(value) = matches.value_of("path_precision") {
if value.trim().parse::<u32>().is_ok() {
// is numeric
let value = value.trim().parse::<u32>().ok();
config.path_precision = value;
} else {
panic!(
"Parser Error: Path precision is not an unsigned integer: {}.",
value
);
}
}
(input_path, output_path, config)
}
fn main() {
let config = Config::from_args();
let result = convert_image_to_svg(config);
let (input_path, output_path, config) = config_from_args();
let result = converter::convert_image_to_svg(&input_path, &output_path, config);
match result {
Ok(()) => {
println!("Conversion successful.");
},
}
Err(msg) => {
panic!("Conversion failed with error message: {}", msg);
}
}
}
}

222
cmdapp/src/python.rs Normal file
View File

@@ -0,0 +1,222 @@
use crate::*;
use image::{io::Reader, ImageFormat};
use pyo3::{exceptions::PyException, prelude::*};
use std::io::{BufReader, Cursor};
use std::path::PathBuf;
use visioncortex::PathSimplifyMode;
/// Python binding
#[pyfunction]
fn convert_image_to_svg_py(
image_path: &str,
out_path: &str,
colormode: Option<&str>, // "color" or "binary"
hierarchical: Option<&str>, // "stacked" or "cutout"
mode: Option<&str>, // "polygon", "spline", "none"
filter_speckle: Option<usize>, // default: 4
color_precision: Option<i32>, // default: 6
layer_difference: Option<i32>, // default: 16
corner_threshold: Option<i32>, // default: 60
length_threshold: Option<f64>, // in [3.5, 10] default: 4.0
max_iterations: Option<usize>, // default: 10
splice_threshold: Option<i32>, // default: 45
path_precision: Option<u32>, // default: 8
) -> PyResult<()> {
let input_path = PathBuf::from(image_path);
let output_path = PathBuf::from(out_path);
let config = construct_config(
colormode,
hierarchical,
mode,
filter_speckle,
color_precision,
layer_difference,
corner_threshold,
length_threshold,
max_iterations,
splice_threshold,
path_precision,
);
convert_image_to_svg(&input_path, &output_path, config).unwrap();
Ok(())
}
#[pyfunction]
fn convert_raw_image_to_svg(
img_bytes: Vec<u8>,
img_format: Option<&str>, // Format of the image (e.g. 'jpg', 'png'... A full list of supported formats can be found [here](https://docs.rs/image/latest/image/enum.ImageFormat.html)). If not provided, the image format will be guessed based on its contents.
colormode: Option<&str>, // "color" or "binary"
hierarchical: Option<&str>, // "stacked" or "cutout"
mode: Option<&str>, // "polygon", "spline", "none"
filter_speckle: Option<usize>, // default: 4
color_precision: Option<i32>, // default: 6
layer_difference: Option<i32>, // default: 16
corner_threshold: Option<i32>, // default: 60
length_threshold: Option<f64>, // in [3.5, 10] default: 4.0
max_iterations: Option<usize>, // default: 10
splice_threshold: Option<i32>, // default: 45
path_precision: Option<u32>, // default: 8
) -> PyResult<String> {
let config = construct_config(
colormode,
hierarchical,
mode,
filter_speckle,
color_precision,
layer_difference,
corner_threshold,
length_threshold,
max_iterations,
splice_threshold,
path_precision,
);
let mut img_reader = Reader::new(BufReader::new(Cursor::new(img_bytes)));
let img_format = img_format.and_then(|ext_name| ImageFormat::from_extension(ext_name));
let img = match img_format {
Some(img_format) => {
img_reader.set_format(img_format);
img_reader.decode()
}
None => img_reader
.with_guessed_format()
.map_err(|_| PyException::new_err("Unrecognized image format. "))?
.decode(),
};
let img = match img {
Ok(img) => img.to_rgba8(),
Err(_) => return Err(PyException::new_err("Failed to decode img_bytes. ")),
};
let (width, height) = (img.width() as usize, img.height() as usize);
let img = ColorImage {
pixels: img.as_raw().to_vec(),
width,
height,
};
let svg =
convert(img, config).map_err(|_| PyException::new_err("Failed to convert the image. "))?;
Ok(format!("{}", svg))
}
#[pyfunction]
fn convert_pixels_to_svg(
rgba_pixels: Vec<(u8, u8, u8, u8)>,
size: (usize, usize),
colormode: Option<&str>, // "color" or "binary"
hierarchical: Option<&str>, // "stacked" or "cutout"
mode: Option<&str>, // "polygon", "spline", "none"
filter_speckle: Option<usize>, // default: 4
color_precision: Option<i32>, // default: 6
layer_difference: Option<i32>, // default: 16
corner_threshold: Option<i32>, // default: 60
length_threshold: Option<f64>, // in [3.5, 10] default: 4.0
max_iterations: Option<usize>, // default: 10
splice_threshold: Option<i32>, // default: 45
path_precision: Option<u32>, // default: 8
) -> PyResult<String> {
let expected_pixel_count = size.0 * size.1;
if rgba_pixels.len() != expected_pixel_count {
return Err(PyException::new_err(format!(
"Length of rgba_pixels does not match given image size. Expected {} ({} * {}), got {}. ",
expected_pixel_count,
size.0,
size.1,
rgba_pixels.len()
)));
}
let config = construct_config(
colormode,
hierarchical,
mode,
filter_speckle,
color_precision,
layer_difference,
corner_threshold,
length_threshold,
max_iterations,
splice_threshold,
path_precision,
);
let mut flat_pixels: Vec<u8> = vec![];
for (r, g, b, a) in rgba_pixels {
flat_pixels.push(r);
flat_pixels.push(g);
flat_pixels.push(b);
flat_pixels.push(a);
}
let mut img = ColorImage::new();
img.pixels = flat_pixels;
(img.width, img.height) = size;
let svg =
convert(img, config).map_err(|_| PyException::new_err("Failed to convert the image. "))?;
Ok(format!("{}", svg))
}
fn construct_config(
colormode: Option<&str>,
hierarchical: Option<&str>,
mode: Option<&str>,
filter_speckle: Option<usize>,
color_precision: Option<i32>,
layer_difference: Option<i32>,
corner_threshold: Option<i32>,
length_threshold: Option<f64>,
max_iterations: Option<usize>,
splice_threshold: Option<i32>,
path_precision: Option<u32>,
) -> Config {
// TODO: enforce color mode with an enum so that we only
// accept the strings 'color' or 'binary'
let color_mode = match colormode.unwrap_or("color") {
"color" => ColorMode::Color,
"binary" => ColorMode::Binary,
_ => ColorMode::Color,
};
let hierarchical = match hierarchical.unwrap_or("stacked") {
"stacked" => Hierarchical::Stacked,
"cutout" => Hierarchical::Cutout,
_ => Hierarchical::Stacked,
};
let mode = match mode.unwrap_or("spline") {
"spline" => PathSimplifyMode::Spline,
"polygon" => PathSimplifyMode::Polygon,
"none" => PathSimplifyMode::None,
_ => PathSimplifyMode::Spline,
};
let filter_speckle = filter_speckle.unwrap_or(4);
let color_precision = color_precision.unwrap_or(6);
let layer_difference = layer_difference.unwrap_or(16);
let corner_threshold = corner_threshold.unwrap_or(60);
let length_threshold = length_threshold.unwrap_or(4.0);
let splice_threshold = splice_threshold.unwrap_or(45);
let max_iterations = max_iterations.unwrap_or(10);
Config {
color_mode,
hierarchical,
filter_speckle,
color_precision,
layer_difference,
mode,
corner_threshold,
length_threshold,
max_iterations,
splice_threshold,
path_precision,
..Default::default()
}
}
/// A Python module implemented in Rust.
#[pymodule]
fn vtracer(_py: Python, m: &PyModule) -> PyResult<()> {
m.add_function(wrap_pyfunction!(convert_image_to_svg_py, m)?)?;
m.add_function(wrap_pyfunction!(convert_raw_image_to_svg, m)?)?;
m.add_function(wrap_pyfunction!(convert_pixels_to_svg, m)?)?;
Ok(())
}

View File

@@ -1,45 +1,52 @@
use std::fmt;
use visioncortex::{Color, CompoundPath, PointF64};
#[derive(Debug, Clone)]
pub struct SvgFile {
pub paths: Vec<SvgPath>,
pub width: usize,
pub height: usize,
pub path_precision: Option<u32>,
}
#[derive(Debug, Clone)]
pub struct SvgPath {
pub path: CompoundPath,
pub color: Color,
}
impl SvgFile {
pub fn new(width: usize, height: usize) -> Self {
pub fn new(width: usize, height: usize, path_precision: Option<u32>) -> Self {
SvgFile {
paths: vec![],
width,
height,
path_precision,
}
}
pub fn add_path(&mut self, path: CompoundPath, color: Color) {
self.paths.push(SvgPath {
path,
color,
})
self.paths.push(SvgPath { path, color })
}
}
impl fmt::Display for SvgFile {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, r#"<?xml version="1.0" encoding="UTF-8"?>"#)?;
writeln!(f,
writeln!(
f,
r#"<!-- Generator: visioncortex VTracer {} -->"#,
env!("CARGO_PKG_VERSION")
)?;
writeln!(
f,
r#"<svg version="1.1" xmlns="http://www.w3.org/2000/svg" width="{}" height="{}">"#,
self.width, self.height
)?;
for path in &self.paths {
path.fmt(f)?;
};
path.fmt_with_precision(f, self.path_precision)?;
}
writeln!(f, "</svg>")
}
@@ -47,11 +54,22 @@ impl fmt::Display for SvgFile {
impl fmt::Display for SvgPath {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let (string, offset) = self.path.to_svg_string(true, PointF64::default());
self.fmt_with_precision(f, None)
}
}
impl SvgPath {
fn fmt_with_precision(&self, f: &mut fmt::Formatter, precision: Option<u32>) -> fmt::Result {
let (string, offset) = self
.path
.to_svg_string(true, PointF64::default(), precision);
writeln!(
f, "<path d=\"{}\" fill=\"{}\" transform=\"translate({},{})\"/>",
string, self.color.to_hex_string(),
offset.x, offset.y
f,
"<path d=\"{}\" fill=\"{}\" transform=\"translate({},{})\"/>",
string,
self.color.to_hex_string(),
offset.x,
offset.y
)
}
}
}

85
cmdapp/vtracer/README.md Normal file
View File

@@ -0,0 +1,85 @@
<div align="center">
<img src="https://github.com/visioncortex/vtracer/raw/master/docs/images/visioncortex-banner.png">
<h1>VTracer: Python Binding</h1>
<p>
<strong>Raster to Vector Graphics Converter built on top of visioncortex</strong>
</p>
<h3>
<a href="//www.visioncortex.org/vtracer-docs">Article</a>
<span> | </span>
<a href="//www.visioncortex.org/vtracer/">Demo</a>
<span> | </span>
<a href="//github.com/visioncortex/vtracer/releases/latest">Download</a>
</h3>
<sub>Built with 🦀 by <a href="//www.visioncortex.org/">The Vision Cortex Research Group</a></sub>
</div>
## Introduction
visioncortex VTracer is an open source software to convert raster images (like jpg & png) into vector graphics (svg). It can vectorize graphics and photographs and trace the curves to output compact vector files.
Comparing to [Potrace](http://potrace.sourceforge.net/) which only accept binarized inputs (Black & White pixmap), VTracer has an image processing pipeline which can handle colored high resolution scans.
Comparing to Adobe Illustrator's [Image Trace](https://helpx.adobe.com/illustrator/using/image-trace.html), VTracer's output is much more compact (less shapes) as we adopt a stacking strategy and avoid producing shapes with holes.
VTracer is originally designed for processing high resolution scans of historic blueprints up to gigapixels. At the same time, VTracer can also handle low resolution pixel art, simulating `image-rendering: pixelated` for retro game artworks.
A technical description of the algorithm is on [visioncortex.org/vtracer-docs](//www.visioncortex.org/vtracer-docs).
## Install (Python)
```shell
pip install vtracer
```
### Usage (Python)
```python
import vtracer
input_path = "/path/to/some_file.jpg"
output_path = "/path/to/some_file.vtracer.jpg"
# Minimal example: use all default values, generate a multicolor SVG
vtracer.convert_image_to_svg_py(inp, out)
# Single-color example. Good for line art, and much faster than full color:
vtracer.convert_image_to_svg_py(inp, out, colormode='binary')
# Convert from raw image bytes
input_img_bytes: bytes = get_bytes() # e.g. reading bytes from a file or a HTTP request body
svg_str: str = vtracer.convert_raw_image_to_svg(input_img_bytes, img_format='jpg')
# Convert from RGBA image pixels
from PIL import Image
img = Image.open(input_path).convert('RGBA')
pixels: list[tuple[int, int, int, int]] = list(img.getdata())
svg_str: str = vtracer.convert_pixels_to_svg(pixels, img.size)
# All the bells & whistles, also applicable to convert_raw_image_to_svg and convert_pixels_to_svg.
vtracer.convert_image_to_svg_py(inp,
out,
colormode = 'color', # ["color"] or "binary"
hierarchical = 'stacked', # ["stacked"] or "cutout"
mode = 'spline', # ["spline"] "polygon", or "none"
filter_speckle = 4, # default: 4
color_precision = 6, # default: 6
layer_difference = 16, # default: 16
corner_threshold = 60, # default: 60
length_threshold = 4.0, # in [3.5, 10] default: 4.0
max_iterations = 10, # default: 10
splice_threshold = 45, # default: 45
path_precision = 3 # default: 8
)
```
## Rust Library
The (Rust) library can be found on [crates.io/vtracer](//crates.io/crates/vtracer) and [crates.io/vtracer-webapp](//crates.io/crates/vtracer-webapp).

View File

@@ -0,0 +1,2 @@
from .vtracer import (convert_image_to_svg_py, convert_pixels_to_svg,
convert_raw_image_to_svg)

View File

@@ -0,0 +1,49 @@
from typing import Optional
def convert_image_to_svg_py(image_path: str,
out_path: str,
colormode: Optional[str] = None, # ["color"] or "binary"
hierarchical: Optional[str] = None, # ["stacked"] or "cutout"
mode: Optional[str] = None, # ["spline"], "polygon", "none"
filter_speckle: Optional[int] = None, # default: 4
color_precision: Optional[int] = None, # default: 6
layer_difference: Optional[int] = None, # default: 16
corner_threshold: Optional[int] = None, # default: 60
length_threshold: Optional[float] = None, # in [3.5, 10] default: 4.0
max_iterations: Optional[int] = None, # default: 10
splice_threshold: Optional[int] = None, # default: 45
path_precision: Optional[int] = None, # default: 8
) -> None:
...
def convert_raw_image_to_svg(img_bytes: bytes,
img_format: Optional[str] = None, # Format of the image (e.g. 'jpg', 'png'... A full list of supported formats can be found [here](https://docs.rs/image/latest/image/enum.ImageFormat.html)). If not provided, the image format will be guessed based on its contents.
colormode: Optional[str] = None, # ["color"] or "binary"
hierarchical: Optional[str] = None, # ["stacked"] or "cutout"
mode: Optional[str] = None, # ["spline"], "polygon", "none"
filter_speckle: Optional[int] = None, # default: 4
color_precision: Optional[int] = None, # default: 6
layer_difference: Optional[int] = None, # default: 16
corner_threshold: Optional[int] = None, # default: 60
length_threshold: Optional[float] = None, # in [3.5, 10] default: 4.0
max_iterations: Optional[int] = None, # default: 10
splice_threshold: Optional[int] = None, # default: 45
path_precision: Optional[int] = None, # default: 8
) -> str:
...
def convert_pixels_to_svg(rgba_pixels: list[tuple[int, int, int, int]],
size: tuple[int, int],
colormode: Optional[str] = None, # ["color"] or "binary"
hierarchical: Optional[str] = None, # ["stacked"] or "cutout"
mode: Optional[str] = None, # ["spline"], "polygon", "none"
filter_speckle: Optional[int] = None, # default: 4
color_precision: Optional[int] = None, # default: 6
layer_difference: Optional[int] = None, # default: 16
corner_threshold: Optional[int] = None, # default: 60
length_threshold: Optional[float] = None, # in [3.5, 10] default: 4.0
max_iterations: Optional[int] = None, # default: 10
splice_threshold: Optional[int] = None, # default: 45
path_precision: Optional[int] = None, # default: 8
) -> str:
...

15
docs/0.bootstrap.js generated

File diff suppressed because one or more lines are too long

BIN
docs/589cb57662b50620abca.module.wasm generated Normal file

Binary file not shown.

2
docs/COPYRIGHT generated
View File

@@ -1,3 +1,3 @@
Copyright (c) 2020 Tsang Hao Fung
All Rights Reserved
The content in the /docs directory is for GitHub pages, and is not covered under open source licenses.

Binary file not shown.

2
docs/bootstrap.js generated vendored
View File

@@ -258,7 +258,7 @@
/******/ promises.push(installedWasmModuleData);
/******/ else {
/******/ var importObject = wasmImportObjects[wasmModuleId]();
/******/ var req = fetch(__webpack_require__.p + "" + {"../pkg/vtracer_webapp_bg.wasm":"bad37dda49ff45dee696"}[wasmModuleId] + ".module.wasm");
/******/ var req = fetch(__webpack_require__.p + "" + {"../pkg/vtracer_webapp_bg.wasm":"589cb57662b50620abca"}[wasmModuleId] + ".module.wasm");
/******/ var promise;
/******/ if(importObject instanceof Promise && typeof WebAssembly.compileStreaming === 'function') {
/******/ promise = Promise.all([WebAssembly.compileStreaming(req), importObject]).then(function(items) {

BIN
docs/images/aliyun-logo.png generated Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 160 KiB

After

Width:  |  Height:  |  Size: 154 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 192 KiB

After

Width:  |  Height:  |  Size: 243 KiB

BIN
docs/images/visioncortex icon.png generated Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

15
docs/index.html generated
View File

@@ -142,6 +142,8 @@
/ VTracer
</div>
<div class="uk-navbar-right uk-padding-small">
<a class="uk-button uk-button-default" href="//www.visioncortex.org/vtracer-docs">Article</a>
&nbsp;&nbsp;
<a class="uk-button uk-button-default" href="//github.com/visioncortex/vtracer">GitHub</a>
&nbsp;&nbsp;
<a id="export" class="uk-button uk-button-primary">Download as SVG</a>
@@ -285,6 +287,19 @@
<input id="splice" class="uk-range" type="range" min="0" max="180" step="1" value="45">
</div>
<div style="display: none">
<div class="spline-options uk-width-1-1 uk-flex uk-flex-right">
<div uk-tooltip="pos: left; title: Number of decimal places used in svg path string">
Path Precision <span class="uk-text-meta">(More digits)</span>
</div>
</div>
<div id="pathprecisionvalue" class="spline-options uk-width-1-6">
8
</div>
<div class="spline-options uk-width-5-6">
<input id="pathprecision" class="uk-range" type="range" min="0" max="16" step="1" value="8">
</div>
</div>
</div>
</div>

View File

@@ -1,8 +1,8 @@
[package]
name = "vtracer-webapp"
version = "0.1.0"
authors = ["Chris Tsang <tyt2y7@gmail.com>"]
edition = "2018"
version = "0.4.0"
authors = ["Chris Tsang <chris.2y3@outlook.com>"]
edition = "2021"
description = "A web app to convert images into vector graphics."
license = "MIT OR Apache-2.0"
homepage = "http://www.visioncortex.org/vtracer"
@@ -22,7 +22,7 @@ console_log = { version = "0.2", features = ["color"] }
wasm-bindgen = { version = "0.2", features = ["serde-serialize"] }
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
visioncortex = "0.4.0"
visioncortex = "0.8.1"
# The `console_error_panic_hook` crate provides better debugging of panics by
# logging them with `console.error`. This is great for development, but requires

View File

@@ -1,3 +1,7 @@
<div align="center">
<img src="https://github.com/visioncortex/vtracer/raw/master/docs/images/visioncortex-banner.png">
</div>
# visioncortex VTracer
A web app to convert raster images into vector graphics.

View File

@@ -185,6 +185,19 @@
<input id="splice" type="range" min="0" max="180" step="1" value="45">
</div>
<div style="display: none">
<div class="spline-options">
<div title="Number of decimal places used in svg path string">
Path Precision <span>(More digits)</span>
</div>
</div>
<div id="pathprecisionvalue" class="spline-options">
8
</div>
<div class="spline-options">
<input id="pathprecision" class="uk-range" type="range" min="0" max="16" step="1" value="8">
</div>
</div>
</div>
</div>
<script src="./bootstrap.js"></script>

View File

@@ -35,7 +35,11 @@ document.addEventListener('paste', function (e) {
// Download as SVG
document.getElementById('export').addEventListener('click', function (e) {
const blob = new Blob([new XMLSerializer().serializeToString(svg)], {type: 'octet/stream'}),
const blob = new Blob([
`<?xml version="1.0" encoding="UTF-8"?>\n`,
`<!-- Generator: visioncortex VTracer -->\n`,
new XMLSerializer().serializeToString(svg)
], {type: 'octet/stream'}),
url = window.URL.createObjectURL(blob);
this.href = url;
@@ -52,6 +56,7 @@ var presetConfigs = [
clustering_hierarchical: 'stacked',
filter_speckle: 4,
color_precision: 6,
path_precision: 8,
layer_difference: 16,
mode: 'spline',
corner_threshold: 60,
@@ -66,6 +71,7 @@ var presetConfigs = [
clustering_hierarchical: 'stacked',
filter_speckle: 4,
color_precision: 8,
path_precision: 8,
layer_difference: 25,
mode: 'spline',
corner_threshold: 60,
@@ -77,9 +83,10 @@ var presetConfigs = [
{
src: 'assets/samples/Gum Tree Vector.jpg',
clustering_mode: 'color',
clustering_hierarchical: 'cutout',
clustering_hierarchical: 'stacked',
filter_speckle: 4,
color_precision: 8,
path_precision: 8,
layer_difference: 28,
mode: 'spline',
corner_threshold: 60,
@@ -94,6 +101,7 @@ var presetConfigs = [
clustering_hierarchical: 'stacked',
filter_speckle: 8,
color_precision: 7,
path_precision: 8,
layer_difference: 64,
mode: 'spline',
corner_threshold: 60,
@@ -108,6 +116,7 @@ var presetConfigs = [
clustering_hierarchical: 'stacked',
filter_speckle: 10,
color_precision: 8,
path_precision: 8,
layer_difference: 48,
mode: 'spline',
corner_threshold: 180,
@@ -122,6 +131,7 @@ var presetConfigs = [
clustering_hierarchical: 'stacked',
filter_speckle: 0,
color_precision: 8,
path_precision: 8,
layer_difference: 0,
mode: 'none',
corner_threshold: 180,
@@ -178,6 +188,9 @@ function loadConfig(config) {
document.getElementById('layerdifferencevalue').innerHTML = globallayerdifference;
document.getElementById('layerdifference').value = globallayerdifference;
globalpathprecision = config.path_precision;
document.getElementById('pathprecisionvalue').innerHTML = globalpathprecision;
document.getElementById('pathprecision').value = globalpathprecision;
}
// Choose template from gallery
@@ -244,7 +257,8 @@ var globalcorner = parseInt(document.getElementById('corner').value),
globalsplice = parseInt(document.getElementById('splice').value),
globalfilterspeckle = parseInt(document.getElementById('filterspeckle').value),
globalcolorprecision = parseInt(document.getElementById('colorprecision').value),
globallayerdifference = parseInt(document.getElementById('layerdifference').value);
globallayerdifference = parseInt(document.getElementById('layerdifference').value),
globalpathprecision = parseInt(document.getElementById('pathprecision').value);
// Load past inputs from localStorage
/*
@@ -327,6 +341,12 @@ document.getElementById('splice').addEventListener('change', function (e) {
restart();
});
document.getElementById('pathprecision').addEventListener('change', function (e) {
globalpathprecision = parseInt(this.value);
document.getElementById('pathprecisionvalue').innerHTML = this.value;
restart();
});
// Save inputs before unloading
/*
window.addEventListener('beforeunload', function () {
@@ -404,6 +424,7 @@ function restart() {
'filter_speckle': globalfilterspeckle*globalfilterspeckle,
'color_precision': 8-globalcolorprecision,
'layer_difference': globallayerdifference,
'path_precision': globalpathprecision,
});
if (runner) {
runner.stop();
@@ -427,7 +448,7 @@ class ConverterRunner {
this.converter.init();
this.stopped = false;
if (clustering_mode == 'binary') {
svg.style.background = '#000';
svg.style.background = '#fff';
canvas.style.display = 'none';
} else {
svg.style.background = '';

View File

@@ -2,7 +2,7 @@
"name": "vtracer-app",
"version": "0.1.0",
"description": "VTracer Webapp",
"author": "Chris Tsang <tyt2y7@gmail.com>",
"author": "Chris Tsang <chris.2y3@outlook.com>",
"license": "proprietary",
"private": true,
"main": "index.js",

View File

@@ -17,6 +17,7 @@ pub struct BinaryImageConverterParams {
pub max_iterations: usize,
pub splice_threshold: f64,
pub filter_speckle: usize,
pub path_precision: u32,
}
#[wasm_bindgen]
@@ -76,10 +77,11 @@ impl BinaryImageConverter {
self.params.max_iterations,
self.params.splice_threshold
);
let color = Color::color(&ColorName::White);
let color = Color::color(&ColorName::Black);
self.svg.prepend_path(
&paths,
&color,
Some(self.params.path_precision),
);
}
self.counter += 1;

View File

@@ -1,6 +1,6 @@
use wasm_bindgen::prelude::*;
use visioncortex::PathSimplifyMode;
use visioncortex::color_clusters::{IncrementalBuilder, Clusters, Runner, RunnerConfig, HIERARCHICAL_MAX};
use visioncortex::{Color, ColorImage, PathSimplifyMode};
use visioncortex::color_clusters::{Clusters, Runner, RunnerConfig, HIERARCHICAL_MAX, IncrementalBuilder, KeyingAction};
use crate::canvas::*;
use crate::svg::*;
@@ -8,6 +8,8 @@ use crate::svg::*;
use serde::Deserialize;
use super::util;
const KEYING_THRESHOLD: f32 = 0.2;
#[derive(Debug, Deserialize)]
pub struct ColorImageConverterParams {
pub canvas_id: String,
@@ -21,6 +23,7 @@ pub struct ColorImageConverterParams {
pub filter_speckle: usize,
pub color_precision: i32,
pub layer_difference: i32,
pub path_precision: u32,
}
#[wasm_bindgen]
@@ -66,7 +69,26 @@ impl ColorImageConverter {
pub fn init(&mut self) {
let width = self.canvas.width() as u32;
let height = self.canvas.height() as u32;
let image = self.canvas.get_image_data_as_color_image(0, 0, width, height);
let mut image = self.canvas.get_image_data_as_color_image(0, 0, width, height);
let key_color = if Self::should_key_image(&image) {
if let Ok(key_color) = Self::find_unused_color_in_image(&image) {
for y in 0..height as usize {
for x in 0..width as usize {
if image.get_pixel(x, y).a == 0 {
image.set_pixel(x, y, &key_color);
}
}
}
key_color
} else {
Color::default()
}
} else {
// The default color is all zeroes, which is treated by visioncortex as a special value meaning no keying will be applied.
Color::default()
};
let runner = Runner::new(RunnerConfig {
diagonal: self.params.layer_difference == 0,
hierarchical: HIERARCHICAL_MAX,
@@ -77,6 +99,12 @@ impl ColorImageConverter {
is_same_color_b: 1,
deepen_diff: self.params.layer_difference,
hollow_neighbours: 1,
key_color,
keying_action: if self.params.hierarchical == "cutout" {
KeyingAction::Keep
} else {
KeyingAction::Discard
},
}, image);
self.stage = Stage::Clustering(runner.start());
}
@@ -107,6 +135,8 @@ impl ColorImageConverter {
is_same_color_b: 1,
deepen_diff: 0,
hollow_neighbours: 0,
key_color: Default::default(),
keying_action: KeyingAction::Discard,
}, image);
self.stage = Stage::Reclustering(runner.start());
},
@@ -137,6 +167,7 @@ impl ColorImageConverter {
self.svg.prepend_path(
&paths,
&cluster.residue_color(),
Some(self.params.path_precision),
);
self.counter += 1;
false
@@ -165,4 +196,56 @@ impl ColorImageConverter {
}) as i32
}
fn color_exists_in_image(img: &ColorImage, color: Color) -> bool {
for y in 0..img.height {
for x in 0..img.width {
let pixel_color = img.get_pixel(x, y);
if pixel_color.r == color.r && pixel_color.g == color.g && pixel_color.b == color.b {
return true
}
}
}
false
}
fn find_unused_color_in_image(img: &ColorImage) -> Result<Color, String> {
let special_colors = IntoIterator::into_iter([
Color::new(255, 0, 0),
Color::new(0, 255, 0),
Color::new(0, 0, 255),
Color::new(255, 255, 0),
Color::new(0, 255, 255),
Color::new(255, 0, 255),
Color::new(128, 128, 128),
]);
for color in special_colors {
if !Self::color_exists_in_image(img, color) {
return Ok(color);
}
}
Err(String::from("unable to find unused color in image to use as key"))
}
fn should_key_image(img: &ColorImage) -> bool {
if img.width == 0 || img.height == 0 {
return false;
}
// Check for transparency at several scanlines
let threshold = ((img.width * 2) as f32 * KEYING_THRESHOLD) as usize;
let mut num_transparent_pixels = 0;
let y_positions = [0, img.height / 4, img.height / 2, 3 * img.height / 4, img.height - 1];
for y in y_positions {
for x in 0..img.width {
if img.get_pixel(x, y).a == 0 {
num_transparent_pixels += 1;
}
if num_transparent_pixels >= threshold {
return true;
}
}
}
false
}
}

View File

@@ -1,6 +1,3 @@
mod binary_image;
mod color_image;
mod util;
pub use binary_image::*;
pub use color_image::*;

View File

@@ -7,7 +7,9 @@
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![doc(
html_logo_url = "https://github.com/visioncortex/vtracer/raw/master/docs/images/visioncortex icon.png"
)]
use wasm_bindgen::prelude::*;
mod conversion;

View File

@@ -13,11 +13,11 @@ impl Svg {
Self { element }
}
pub fn prepend_path(&mut self, paths: &CompoundPath, color: &Color) {
pub fn prepend_path(&mut self, paths: &CompoundPath, color: &Color, precision: Option<u32>) {
let path = document()
.create_element_ns(Some("http://www.w3.org/2000/svg"), "path")
.unwrap();
let (string, offset) = paths.to_svg_string(true, PointF64::default());
let (string, offset) = paths.to_svg_string(true, PointF64::default(), precision);
path.set_attribute("d", &string).unwrap();
path.set_attribute(
"transform",